
ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering
Lufei Liu and Tor M. Aamodt
University of British Columbia

We extend the caching scheme introduced by DeepCache to rendering workloads:

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

𝐶(

Frame 𝒕 + 𝟏Frame 𝒕

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

𝐶(U
-N

et

Workload Scene Skipped
Frames ↑

Eliminated
Enc-Dec 
FLOPs ↑

Inference 
Speedup ↑

FLIP Image 
Quality 
Score ↓ 

FE

Sun Temple 50% 27% 1.42 0.0169

Cyberpunk 30% 16% 1.10 0.0207

Asian 
Village 35% 19% 1.24 0.0241

SS Sun Temple 40% 29% 1.30 0.0490

IC Garden 
Chair 13% 6% 1.05 0.0006

SS: SupersamplingFE: Frame 
Extrapolation

IC: Image 
Composition

ReFrame achieves:

with negligible FLIP image error of 0.006–0.1
up to 1.05–1.85x inference speedup

by extending existing caching techniques with dynamic policies

15 out of 16 pixels are AI-generated in real-time rendering

Accelerating neural network inferences is 
necessary for better graphics 

Diffusion Models vs. Rendering

Diffusion Model Rendering

Often applies a U-Net / Encoder-Decoder architecture.

Relies on repeated forward passes to generate output.

Exhibits high temporal redundancy between forward-pass inferences.

Behavior of forward passes follows a 
predictable pattern.

Behavior of forward passes is 
dependent on real-time inputs.

Errors from one forward pass can be 
corrected before the final output.

Errors from each forward pass is 
directly visible and accumulates.

Inference time is best-effort but quality 
is important.

Image quality is best-effort but 
inference time is strict.

Overview of ReFrame Evaluation
We evaluate ReFrame on three real-time rendering workloads:

ExtraNet
Fourier-Based 

Super Resolution Implicit-Depth

• Neural networks for real-time rendering share similarities with diffusion models.
• Techniques designed for diffusion models can be adapted to support rendering 

workloads.

Process 
Inputs

Raster / 
Ray Trace

Post-
Process Display

<	16.7 ms ≈ 60 FPS <	11.1 ms ≈ 90 FPS
Dynamic Refresh Policy

𝑪𝒕

𝑂 = 𝑋#(𝑐𝑜𝑛𝑐𝑎𝑡 𝑪𝒕, 𝑋%(𝐼 )

Save to cache

Project Website + 

Code

• Real-time rendering is important for video games, AR/VR applications, scientific 
simulations, and 3D design.

• Neural network inferences are commonly used in the post-processing stage of 
real-time rendering to augment low-quality renderings achieved using 
rasterization or ray tracing.

• Several rendering stages are required to create every frame and strict latency 
requirements enforce desired frame rates.

Static Every-N Refresh time

Refresh after 3 frames even 
if scene does not change

Cache is stale if large changes 
occur before refresh

Dynamic Adaptive Refresh time

Refresh only when scene changes 
and save more compute

Cache contents 
update when change 

occurs

Results

• There is no predetermined pattern in a 
real-time application
•Changes in the input is a good indicator 

for changes in the output
•Compute full inference and refresh cache 

when input changes significantly

13-50% of the frames in our workloads can take advantage of the 
cached features, which eliminates 6-29% of FLOPs in the encoder-
decoder network, at a small cost to image quality.

Neural 
Network

Input

Output

Cached Input
SMAPE

Refresh 
Cache?

Cached 
Features

𝑂 = 𝑋#(𝑐𝑜𝑛𝑐𝑎𝑡(𝑿𝒏'𝟏 𝒄𝒐𝒏𝒄𝒂𝒕 𝑿𝒏'𝟐 … ,𝑿𝟏 𝑿𝟎 𝑰 , 𝑋%(𝐼))

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

𝐶(

Frame 𝒕 + 𝟐

…reuse intermediate 
results

𝐼 𝑂 𝐼 𝑂 𝐼 𝑂

Baseline Static Every-N Dynamic Adaptive

𝑂 = 𝑋#(𝑐𝑜𝑛𝑐𝑎𝑡 𝑪𝒕, 𝑋%(𝐼 )

Load from cache

1st 


