ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Refresh

Cache?

Cached

Features

Neural

Network

Output

Project Website + Code

Lufei Liu and Tor M. Aamodt University of British Columbia

15 out of 16 pixels are Al-generated in real-time rendering

Accelerating neural network inferences is necessary for better graphics

- Real-time rendering is important for video games, AR/VR applications, scientific simulations, and 3D design.
- Neural network inferences are commonly used in the post-processing stage of real-time rendering to augment low-quality renderings achieved using rasterization or ray tracing.
- Several rendering stages are required to create every frame and strict latency requirements enforce desired frame rates.

Diffusion Models vs. Rendering

- Neural networks for real-time rendering share similarities with diffusion models.
- Techniques designed for diffusion models can be adapted to support rendering workloads.

Diffusion Model	Rendering			
Often applies a U-Net / Enc	Often applies a U-Net / Encoder-Decoder architecture.			
Relies on repeated forward	lies on repeated forward passes to generate output.			
Exhibits high temporal redundancy between forward-pass inferences.				
Behavior of forward passes follows a predictable pattern.	Behavior of forward passes is dependent on real-time inputs.			
Errors from one forward pass can be corrected before the final output.	Errors from each forward pass is directly visible and accumulates.			
Inference time is best-effort but quality is important.	Image quality is best-effort but inference time is strict.			

Refresh only when scene changes

and save more compute

Frame

Cache contents

update when change

occurs

Frame

Dynamic Adaptive

ம் 0.05 ₹

— Static Every-N

Evaluation

We evaluate ReFrame on three real-time rendering workloads:

FE: Frame Extrapolation ExtraNet

Fourier-Based Super Resolution

IC: Image Composition Implicit-Depth

Results

13-50% of the frames in our workloads can take advantage of the cached features, which eliminates 6-29% of FLOPs in the encoderdecoder network, at a small cost to image quality.

	Workload	Scene	Skipped Frames ↑	Eliminated Enc-Dec FLOPs ↑	Inference Speedup ↑	FLIP Image Quality Score ↓
	FE	Sun Temple	50%	27%	1.42	0.0169
		Cyberpunk	30%	16%	1.10	0.0207
		Asian Village	35%	19%	1.24	0.0241
	SS	Sun Temple	40%	29%	1.30	0.0490
	IC	Garden Chair	13%	6%	1.05	0.0006

ReFrame achieves:

up to 1.05-1.85x inference speedup with negligible FLIP image error of 0.006-0.1

