
ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Lufei Liu 1 Tor M. Aamodt 1

Abstract
Graphics rendering applications increasingly
leverage neural networks in tasks such as denois-
ing, supersampling, and frame extrapolation to
improve image quality while maintaining frame
rates. The temporal coherence inherent in these
tasks presents an opportunity to reuse interme-
diate results from previous frames and avoid re-
dundant computations. Recent work has shown
that caching intermediate features to be reused in
subsequent inferences is an effective method to
reduce latency in diffusion models. We extend
this idea to real-time rendering and present Re-
Frame, which explores different caching policies
to optimize trade-offs between quality and per-
formance in rendering workloads. ReFrame can
be applied to a variety of encoder-decoder style
networks commonly found in rendering pipelines.
Experimental results show that we achieve 1.4×
speedup on average with negligible quality loss
in three real-time rendering tasks. Code available:
https://ubc-aamodt-group.github.
io/reframe-layer-caching/

1. Introduction
Real-time rendering is an important application that enables
high-quality visualizations and interactivity across many
industries such as gaming, virtual reality, design, and health-
care. In recent years, neural networks have become a critical
component in real-time rendering workloads. To achieve
high-quality renderings within a limited frame budget, only
a small fraction of the image is rendered through tradi-
tional techniques like ray tracing. The majority of the pixels
are actually generated using upsampling methods such as
frame extrapolation and supersampling neural networks.
The newest version of NVIDIA’s Deep Learning Super Sam-
pling (DLSS) technology, DLSS 4.0 (Lin & Burnes, 2025),

1Department of ECE, University of British Columbia,
Vancouver, Canada. Correspondence to: Lufei Liu <liu-
lufei@student.ubc.ca>, Tor M. Aamodt <aamodt@ece.ubc.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

applies neural networks to upscale images to 4× resolution
and 4× frame rate, effectively rendering only one of every
16 pixels through traditional methods.

Real-time rendering applications are latency-sensitive, es-
tablishing an important trade-off between quality and per-
formance. Neural network inferences now make up a sig-
nificant portion of the rendering pipeline, especially with
ray tracing accelerated using dedicated hardware like the
NVIDIA RT Core. Any reduction of the inference latency
can be used to allocate more resources to traditional render-
ing and improve the final image quality or directly improve
the frame rate, both of which benefit user experience.

One approach to accelerate inference latency is by identi-
fying sources of redundancy in the computation (LeCun
et al., 1989). Rendering workloads naturally exhibit tempo-
ral coherence, where the content of consecutive frames is
highly correlated (Scherzer et al., 2012). The inter-frame
similarities are particularly high with fast frame rates, at
which frame content changes slowly even with fast camera
movements. These similarities also persist deep within the
neural networks, exhibiting redundancy in the computation
of intermediate layers. Figure 1 shows a sequence of 20
frames in an Unreal Engine demo scene to visually illustrate
similarities between frames and slow scene changes.

A similar observation was recently made in the context of
diffusion models, where intermediate layer outputs were
cached and reused in subsequent inferences of the model by
injecting cached results in concatenations with skip connec-
tions instead of computing deeper layers (Ma et al., 2024;
Wimbauer et al., 2024). This caching scheme was shown to
be effective in reducing the number of FLOPs required for
inference, leading to faster inferences and lower computa-
tional costs. We explore adapting this caching technique to
neural networks used in real-time rendering applications.

Although the caching technique was originally designed
for U-Nets in diffusion models (Ho et al., 2020; Rombach
et al., 2022), we show that it can be applied to a variety of
encoder-decoder style networks commonly found in render-
ing pipelines. Adapting the technique for rendering work-
loads comes with several challenges. Unlike diffusion mod-
els that rely on long sequences of inference iterations to
produce a single output, every inference iteration must pro-
duce a high-quality frame in real-time rendering. Therefore,

1

https://ubc-aamodt-group.github.io/reframe-layer-caching/
https://ubc-aamodt-group.github.io/reframe-layer-caching/

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Figure 1. Input similarity in a rendering workload showing every three frames. Upper right plot shows the similarity compared to Frame 0
(Frame t vs. Frame 0) and similarity between consecutive frames (Frame t vs. Frame t− 1) measured as FLIP scores.

approximate features in the cache used by ReFrame must
trade image quality for improved frame rates in a way that
does not impede the user experience. Furthermore, diffu-
sion models rely on a fixed number of forward passes with
a consistent pattern of change to guide the cache (Ma et al.,
2024), while ReFrame must address the challenge of high
variations and unpredictability in rendering workloads.

Our contributions are as follows:

• We extend existing methods of caching intermediate
network features beyond U-Nets in diffusion models
to a variety of encoder-decoder style networks that
include feature concatenation.

• We explore new caching configurations to optimize
trade-offs between quality and inference time that take
advantage of patterns in real-time rendering workloads.

• We demonstrate empirically on an NVIDIA RTX 2080
Ti GPU that using ReFrame reduces the inference time
of three different real-time rendering networks (frame
extrapolation, supersampling, and image composition)
by 1.4× on average with negligible quality loss.

2. Related Work
This section reviews related research on exploiting frame
similarity in rendering and video-processing, trading output
accuracy for faster inference in neural networks, and the use
of neural networks in real-time rendering applications.

2.1. Inter-frame Similarity

Temporal coherence in rendering workloads and in video
processing has long been explored to reduce the compu-
tational cost of processing frames (Walter et al., 1999;
Scherzer et al., 2012; Arnau et al., 2013). DeltaCNN (Parger

et al., 2022) and Event-NN (Dutson et al., 2022) exploit this
similarity by processing only the differences (deltas) be-
tween frames of video from a still camera, effectively spar-
sifying the computation. MotionDeltaCNN (Parger et al.,
2023) extends this idea to accommodate camera motion,
and Eventful Transformers (Dutson et al., 2023) adapts it
to transformer architectures. However, despite high FLOPs
reduction, these techniques struggle to generate significant
speedups because the underlying hardware is not optimized
for the scattered nature of the eliminated computations,
which is a problem that ReFrame avoids.

Hardware accelerators like Cambricon-D (Kong et al., 2024)
and Diffy (Mahmoud et al., 2018) have also been proposed
to exploit frame similarity on dedicated hardware, but are
not adopted in commodity hardware. A more practical ap-
proach to exploiting frame similarity is through caching
intermediate layer outputs of neural networks (Ma et al.,
2024; Wimbauer et al., 2024; Xu et al., 2018), but has only
been applied to diffusion models over long sequences of
inferences. Caching approaches have also been used for
neural rendering (Steiner et al., 2024), which is typically
used for view synthesis rather than rendering synthetic vir-
tual worlds. Inter-frame similarity is a well-known source
of redundancy and ReFrame introduces a technique that
produces real benefits in real-time rendering workloads.

2.2. Approximate Inference

Not all applications require exact inference results, and ap-
proximate inference can be used to reduce the computational
cost of neural networks (Sun et al., 2024). Approximate
inference can be achieved through quantization (Hubara
et al., 2016), pruning (Han et al., 2016), or low-rank fac-
torization (Denton et al., 2014) and demonstrate potential
of trading accuracy for performance. These approaches re-
cover the accuracy loss by training the network to adapt to

2

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

the approximate inference, while ReFrame is training-free.
However, ReFrame is orthogonal to other approximate infer-
ence techniques and can potentially benefit from a combined
approach with these methods.

2.3. Real-time Rendering Networks

In the real-time rendering pipeline, a low resolution image
is usually generated through ray tracing, an algorithm capa-
ble of creating highly photo-realistic images. However, ray
tracing is an expensive and very noisy process, and cannot
independently produce a clear image within the frame bud-
get to meet 60-90 frames per second. Therefore, a noisy low
resolution ray-traced image is passed through a series of
neural networks for denoising (Choi et al., 2024; Scardigli
et al., 2024; Chen et al., 2023), frame extrapolation (Guo
et al., 2021; Wu et al., 2023; Yang et al., 2024), and neural
supersampling or super resolution (Zhang et al., 2024; He
et al., 2024; Zhong et al., 2023; Yang et al., 2023; Mercier
et al., 2023) to generate the final high resolution image.
Augmented and virtual reality (AR/VR) applications further
require additional network inferences for image composi-
tion (Watson et al., 2023; Yu et al., 2023). DLSS (Lin &
Burnes, 2025) and Intel XeSS (Chowdhury et al., 2022) are
popular examples of a neural networks that are widely used
in the gaming industry for real-time rendering, but require
high-end GPUs and can still benefit from dedicating more
resources to a better input image.

Real-time rendering networks commonly take advantage
of U-Net (Ronneberger et al., 2015) and U-Net++ (Zhou
et al., 2018) architectures for their ability to capture spatial
information at different scales, which is useful for extracting
features from images and managing different image reso-
lutions. Although these networks are designed to be fast,
they still contribute a significant portion of the rendering
pipeline latency, often exceeding capabilities of lower-end
devices (Bhuyan et al., 2024; Yang et al., 2023). ReFrame
aims to reduce FLOPs in these workloads to support better
quality rendering on mobile devices.

3. ReFrame
We focus ReFrame on networks that include an encoder-
decoder architecture with skip connections, such as U-Net
or U-Net++, due to their ubiquity in state-of-the-art real-
time rendering pipelines. These networks are characterized
by a series of convolutional layers that downsample the in-
put image (I) to a low-dimensional feature space, followed
by a series of convolutional layers that upsample the fea-
ture space back to the original image resolution. At each
downsampling block, the network branches off to a skip con-
nection that concatenates to the corresponding upsampling
block, illustrated in Figure 2 (a). For a U-Net with n blocks,
the output of the network (O) can be described as convolu-

tional blocks (Xi) that process outputs from previous blocks
concatenated (concat) with skip connections:

O = Xn(concat(Xn−1(

concat(Xn−2(· · ·), X1(X0(I)))),

X0(I))) (1)

In a U-Net++, the network branches off to multiple skip
connections at each downsampling block, creating a nested
U-Net structure, as shown in Figure 2 (b). U-Net++ blocks
are denoted as Xi,j , where i is the depth of the block and
j indexes a convolution along the skip connection where
j ∈ [0, i] ∩ Z.

3.1. Layer Caching

In a U-Net, the final output from the network is the result
of the last block (Xn), which takes in a concatenation of
results from previous blocks as its input. At the first frame
(at time t), we compute the network inference end-to-end as
normal, and store the inputs to the last block of the network
in a cache (Ct). Specifically, we cache the portion that is
produced by the previous encoder block, Xn−1, which con-
tains high-level features extracted from the input image that
often change slowly between frames. Then, for subsequent
frames, we reuse the cached results (Ct) from the main
branch and concatenate them with the skip connection from
the first block, X0. This process allows us to compute only
X0 and Xn, skipping all of the deeper layers in the network
and replacing them with cached inferences, as described in
DeepCache (Ma et al., 2024):

Ct = Xn−1(concat(Xn−2(· · ·), X1(X0(I)))) (2)

O = Xn(concat(Ct, X
0(I))) (3)

In a U-Net++ architecture, the final block (X0,n) concate-
nates more skip connections than only the first block like in
a U-Net. Each skip connections that feeds into a concatena-
tion can be a potential candidate for caching. One possible
way to extend the caching scheme used in DeepCache to
U-Net++ is to cache the results from each branch, except
the skip connection from the first block (X0,0):

O = X0,n(concat(C0,n−1
t , C0,n−2

t , · · · , X0,0(I))) (4)

However, to better pass new information through the net-
work, we instead cache the branches that lead into all the
higher-level blocks (X0,j). Figure 2 shows the U-Net and U-
Net++ architectures with layer caching for the full inference
frame and subsequent cached frames.

3

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

𝐶

Frame 𝒕

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

𝐶

Frame 𝒕 + 𝟏

Skipped block Save to cache Upsample Downsample Skip connection

(a) U-Net (b) U-Net++

in out in out

𝑋!,!

𝑋",!

𝑋#,!

𝑋$,!

𝑋!,"

𝑋","

𝑋#,"

𝑋",#

𝑋!,$𝑋!,#

𝐶𝐶𝐶

𝑋!,!

𝑋",!

𝑋#,!

𝑋$,!

𝑋!,"

𝑋","

𝑋#,"

𝑋",#

𝑋!,$𝑋!,#

𝐶 𝐶 𝐶

Frame 𝒕 Frame 𝒕 + 𝟏

𝐶

Figure 2. Diagrams of U-Net (a) and U-Net++ (b) architectures with layer caching. In frame t, the network computes the full inference
end-to-end, saving intermediate outputs into a cache. In subsequent frames t + 1, the network reuses the cached results instead of
re-computing the intermediate layers.

In some cases, ReFrame can be applied on networks beyond
U-Net and U-Net++ architectures if the network comprises
concatenations of intermediate layer outputs. For example,
some networks concatenate results from several feature ex-
traction blocks before passing them to the final block. In
these cases, we can cache the results of any slow-changing
feature extraction blocks to reuse in subsequent frames.

3.2. Cache Policies

Although the caching scheme is simple, the choice of which
layers to cache and how to manage the cache can have a
significant impact on the performance of the network. First,
our caching scheme can be applied at any depth in the U-
Net and U-Net++ architectures instead of just the last block.
Figure 3 shows the features at different depths (levels) over
consecutive frames in a rendering workload. Caching the
last block is the most effective for reducing the number of
FLOPs required, but also suffers the highest quality degra-
dation because the changes in intermediate features (light
green regions in Figure 3) at all levels are ignored. We find
empirically that the quality degradation from caching at the
last block is outweighed by the performance gains, which
we demonstrate in Section 4.5. More importantly, we ex-
plore different policies to manage how the cache is refreshed.
If the cache is updated every frame, the network will always
compute the full inference, which defeats the purpose of the
caching scheme. However, if the cache is never updated,
the high-level features in the cache will become stale and
no longer be representative of the input image. Ideally, the
cache should be refreshed just before its contents noticeably
affect the output quality.

3.2.1. EVERY-N

DeepCache (Ma et al., 2024) proposes a simple policy to
update the cache everyN frames, whereN can be a hyperpa-
rameter tuned to balance quality and performance. Although

Figure 3. Feature similarity between consecutive frames in a ren-
dering workload relative to Frame 0. Levels 1-3 correspond to the
depth of the U-Net architecture (i.e. outputs of X0, X1, and X2).

this policy is simple and effective, it fails to consider the vari-
ations in camera motion and scene complexity of real-time
rendering workloads. For example, a fast-moving camera
or a scene with many moving objects can quickly cause
the cache to become stale. This behavior does not exist in
diffusion models because the diffusion process is known
to be smooth over time and not prone to sudden changes.
DeepCache also proposed a non-linear cache policy that dis-
tributes the cache refreshes to fit temporal similarity patterns
observed in diffusion models. The proposed distribution
prioritizes refreshing the cache at the beginning and end
of the image generation process where the most significant
changes occur, but there is no such pattern for real-time ren-
dering workloads. We evaluate both policies in Section 4.5
and compare it to adaptive policies for ReFrame.

4

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

3.2.2. FRAME DELTAS

We propose an adaptive policy that updates the cache only
when the input image changes significantly from the cached
frame. Instead of storing only Ct, we also store It, which
we use to compute the symmetric mean absolute percentage
error (SMAPE) between the input image and the cached
image, SMAPE(I, It). If the SMAPE exceeds a threshold
τ , we refresh the cache by computing the full inference and
saving the new Ct′ and It′ . This approach incurs additional
computation for the SMAPE and additional memory to store
It but better adapts to the unpredictable nature of real-time
rendering workloads, prevents sudden quality drops, and
still reduces inference time overall as shown in Section 4.2.
A secondary benefit is that the computed frame deltas can
exploit techniques such as DeltaCNN (Parger et al., 2022) to
further reduce the number of FLOPs required for inference.

By applying an adaptive policy, we increase average com-
putation savings during periods of low camera motion or
low scene complexity because the cache can be refreshed
less frequently than in the every-N approach. Also, this
approach avoids sudden quality drops than can occur with
every-N policies when content changes are not aligned with
the fixed refresh intervals. This benefit is particularly impor-
tant in real-time rendering workloads because the end user
may not notice smooth quality differences, but will notice
sudden changes in quality (Thakolsri et al., 2011). We con-
sider both high and low sensitivity thresholds (Delta H and
Delta L) for the SMAPE in our experiments, which can be
tuned to balance quality and performance.

3.2.3. MOTION VECTOR THRESHOLD

Another possible policy for real-time rendering is the use of
motion vectors to identify when the input image changes sig-
nificantly. Motion vectors are already rendered as part of the
G-buffers in many rendering pipelines and are often required
as an input for supersampling and frame extrapolation tasks.
Therefore, we propose to set a maximum motion threshold
τ , then check whether the average motion exceeds τ at each
frame, and refresh the cache if the threshold is exceeded.
This policy results in similar advantages of adaptability as
using frame deltas, but does not require any additional stor-
age when motion vectors are already computed. However,
motion is only one source of change in the input image, and
frame deltas present a more comprehensive indicator for
cache refreshes.

3.3. Quality Trade-offs

Our caching scheme introduces an additional trade-off be-
tween quality and performance, where the quality of the
inference result is diminished due to the reuse of cached
features. Caching at deeper layers in the network can help
recover some of the quality degradation, but also reduces

the performance gains. A different approach for mitigating
quality degradation is to allocate the saved inference time
to rendering a better input image, such as increasing the
samples per pixel count in ray tracing or slightly increas-
ing the resolution of the input image. Depending on the
application, this approach can lead to higher quality images
overall or higher frame rates with negligible quality loss.
We explore this trade-off between allocating resources to
traditional rendering versus network inferences empirically
in Section 4.2.2

4. Experiment Evaluation
We evaluate ReFrame on three common real-time rendering
tasks: frame extrapolation (FE), supersampling (SS), and
image composition (IC). In a rendering pipeline, all of these
tasks may be required, in addition to tasks including ray
tracing, denoising, adaptive sampling, and other processing
steps. For each task, we execute end-to-end inference on a
sequence of frames, comparing the quality and performance
of ReFrame against the baseline network. We modify each
network in PyTorch to add our caching scheme, follow-
ing implementation details in Appendix A.2. We choose
frame deltas with both high (Delta H) and low (Delta L)
sensitivities as the default policy to refresh the cache for all
experiments except the ablation study in Section 4.5, where
we compare different cache policies.

4.1. Evaluation Metrics

We evaluate the performance of ReFrame using a combi-
nation of image quality metrics and latency metrics. For
image quality, we use FLIP (Andersson et al., 2020), learned
perceptual image patch similarity (LPIPS) (Zhang et al.,
2018), structural similarity (SSIM), and peak signal to noise
ratio (PSNR), which are all full-reference image quality as-
sessments (FR-IQA) commonly used to evaluate rendering
quality. The FLIP score is specifically designed to evalu-
ate rendered images and measures the perceptual similarity
between two images, which provides the most insight to
how our technique affects the end-user experience. We use
the results of the baseline network without ReFrame as the
reference image for all metrics unless otherwise specified.

For latency, we compare relative speedup in inference la-
tency measured on a NVIDIA RTX 2080 Ti GPU. We also
measure the number of floating point operations (FLOPs)
required for inference within each encoder-decoder network
(Enc-Dec FLOPs) to quantify the computational savings
of our caching scheme. We also report the proportion of
frames that use the cached features to reduce computation
(Skipped Frames). The remaining frames require full in-
ference due to cache refreshes or sudden movements that
invalidate the cache, and these frames might benefit from
orthogonal techniques like DeltaCNN (Parger et al., 2022).

5

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Policy Workload Scene Skipped
Frames ↑

Eliminated
Enc-Dec FLOPs ↑ Speedup ↑ FLIP ↓ SSIM ↑ PSNR ↑ LPIPS ↓ MSE ↓

Delta H FE Sun Temple 50% 27% 1.42 0.0169 0.994 41.41 0.0066 1.63
Cyberpunk 30% 16% 1.10 0.0207 0.981 31.08 0.0103 3.66
Asian Village 35% 19% 1.24 0.0241 0.985 33.19 0.0248 3.89

SS Sun Temple 40% 29% 1.30 0.0490 0.970 53.13 0.0263 17.62

IC Garden Chair 13% 6% 1.05 0.0006 1.000 47.93 0.0001 0.07

Delta L FE Sun Temple 80% 43% 1.72 0.0325 0.984 37.35 0.0198 4.71
Cyberpunk 60% 32% 1.49 0.0345 0.968 31.29 0.0181 6.07
Asian Village 60% 32% 1.55 0.0462 0.969 32.44 0.0508 7.81

SS Sun Temple 80% 57% 1.85 0.1180 0.930 34.52 0.0725 41.40

IC Garden Chair 79% 34% 1.20 0.0127 0.991 33.34 0.0109 1.79

Table 1. Performance and image quality results of our selected workloads (FE - frame extrapolation, SS - supersampling, IC - image
composition). We compare two sensitivity settings in the delta cache policy: high sensitivity (Delta H) and low sensitivity (Delta L),
detailed in Appendix A.3. Results are relative to the baseline network without caching. Enc-Dec FLOPs ↑ do not include additional
inference operations outside the encoder-decoder network.

Figure 4. Frame extrapolation results with and without caching on the Asian Village scene using ExtraNet. The FLIP error map is shown
on the right (pink indicates highly noticeable regions of differences).

4.2. Performance and Quality Results

Table 1 summarizes our key results, showing that ReFrame
consistently reduces FLOPs and inference latency across
all tasks. Our FLIP score results highlight that perceptual
quality loss is negligible. All scores are generally below
the acceptable losses observed in other neural rendering sys-
tems, which report scores between 0.05 and 0.28 in their fi-
nal results (Müller et al., 2021; Li et al., 2022; Vaidyanathan
et al., 2023). Even with higher MSE in some workloads,
user experience should not be affected, as demonstrated by
low perceptual loss scores such as FLIP and LPIPS.

ReFrame applies to 72% of inferences on average with a low
sensitivity setting (Delta L), resulting in a 40% reduction
in FLOPs and 1.6× speedup in inference latency. With a
high sensitivity setting (Delta H), our caching scheme still
reduces 19% of FLOPs, with negligible quality loss. Even
though the cache is only applied to a subset of inferences
on a portion of the network, we still achieve performance
gains in all cases.

4.2.1. FRAME EXTRAPOLATION

Frame extrapolation takes historical and current frames as in-
puts (ex. It−2, It−1, and It) and predicts future in-between

frames (ex. It+0.5). The final result displayed to the user
alternates between rendered frames and extrapolated frames,
which doubles the effective frame rate. We evaluate our
caching scheme on ExtraNet (Guo et al., 2021), which uses
a U-Net architecture with skip connections as a major com-
ponent of the network. We generate our test set with the Un-
real Engine build published by the authors and free scenes
from the online Unreal Engine Marketplace (Fab), detailed
in Appendix A.1. Although the scenes we evaluate are not
identical to the original dataset, which is not freely available,
we are only interested in the relative performance between
the baseline and cached networks so this does not affect our
evaluation. Figure 4 shows a visual example of our frame
extrapolation results with and without caching, including
the FLIP error map.

4.2.2. NEURAL SUPERSAMPLING

Neural supersampling is similar to image super resolu-
tion and upsamples a low resolution (LR) rendering in-
put to a high resolution (HR) image output, but supersam-
pling is adapted to reflect aliasing properties in computer
graphics (Xiao et al., 2020). We evaluate ReFrame on a
Fourier-based super resolution network (FBSR) for super-
sampling (Zhang et al., 2024). The network concatenates

6

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Figure 5. Supersampling results on the Sun Temple scene using FBSR. Ground truth image is rendered at high resolution. Delta H and
Delta L show results with caching enabled. 3× supersampling shows quality improvements from using a larger input image. Zoomed-in
regions show detailed quality differences between each configuration.

Scaling
Factor Config Total Time

(s) ↓
Time

Savings ↑ FLIP ↓ SSIM ↑ PSNR ↑ LPIPS ↓

4× Baseline 1.459 0.00 0.398 0.761 21.305 0.356
Delta H 1.122 0.34 0.399 0.761 21.239 0.357
Delta L 0.788 0.67 0.401 0.761 21.040 0.367

3× Baseline 1.506 -0.05 0.395 0.765 21.353 0.359
Delta H 1.27 0.19 0.396 0.766 21.316 0.360
Delta L 0.932 0.53 0.399 0.761 21.174 0.371

Table 2. Supersampling results on the Sun Temple scene. The
scaling factor is the ratio of 1080p output resolution to 270p and
360p input resolutions. Time savings is measured relative to the
baseline inference time for 4× scaling. 3× scaling is slower than
4× scaling without ReFrame. Image quality is measured against
ground truth 1080p rendered images.

three feature extraction blocks that feed into a feature fu-
sion block. Similar to caching downsampling blocks in the
U-Net architecture, we cache the temporal and HR feature
extraction blocks in FBSR. We use the same Unreal Engine
build and the Sun Temple scene from our test set to eval-
uate caching for FBSR. Figure 5 shows a visual example
of our supersampling results with different cache policies
compared to the baseline and ground truth HR images.

We also evaluate the trade-off between quality and perfor-
mance by comparing between a small LR input using no
cache and a larger LR input with a cache. Table 2 shows that
by using a cache, we can improve the final image quality by
allocating the saved inference time to rendering a larger low
resolution image. Although inference time for 3× upscaling
is slower (-0.05s) due to the larger input size, by applying
our proposed caching scheme, we can exploit the quality
benefits of the larger input without suffering performance
penalties. For example, 3× upscaling with a cache achieves
a higher FLIP score with the Delta H policy and results in
0.19s latency savings over 20 frames.

4.2.3. IMAGE COMPOSITION

Image composition is useful for augmented reality (AR)
applications that require multiple images to be combined
into a single frame. We choose Implicit Depth (Watson

et al., 2023) as our test network, which estimates the depth
of a real image and composites a virtual rendering into the
real scene with correct occlusions. Implicit Depth uses a U-
Net++ architecture for depth estimation and we evaluate the
network using sample data released by the authors. Figure 6
shows a visual example of our image composition workload,
with the FLIP error map comparing the final composite
results with and without caching.

Figure 7 shows the inference time of the decoder blocks in
Implicit Depth over time. By applying our caching scheme,
the average inference time is significantly reduced. Spikes
in inference time are cache refreshes, which occur when the
input image changes significantly from the cached frame and
only add a small latency overhead. Using our Delta L policy,
we can store the cache for longer periods of time when the
input image is stable, as shown in the first 20 frames. Then,
when the input image shows more changes, the cache is
refreshed more often to prevent quality degradation.

4.3. Overheads

The performance overheads of storing and loading cached
tensors are negligible compared to the performance gains
from reducing computation. There is a small lag during
cache refreshes to compute frame deltas as observed in
Figure 7 for Delta L, but this additional latency falls in
the range of noise for the full inference time and can be
eliminated with simpler policies such as every-N. Also, the
memory overhead of our caching scheme is small, storing
only one or a few tensors in total for the cache and one copy
of the network input for frame deltas. Details of the cache
memory consumption are included in Appendix A.6.

4.4. Comparison to DeltaCNN

DeltaCNN (Parger et al., 2022) is another method that ex-
ploits frame similarity by processing only the differences
(deltas) between frames. We evaluate DeltaCNN on the
frame extrapolation task using the Asian Village scene from
our test set and the public DeltaCNN library for PyTorch. Ta-

7

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Figure 6. Implicit Depth results combining Real and Render into Composite. The FLIP error map is shown on the right comparing results
with and without using a cache, where pink indicates highly noticeable regions of differences.

0 20 40 60 80 100
Frame

0

10

20

In
fe

re
nc

e
Ti

m
e

(m
s) No Cache N-5 Delta_L

Figure 7. Inference time of decoder blocks in Implicit Depth over
100 frames. Both N-5 and Delta L policies show significant reduc-
tions in inference time compared to No Cache. Delta L spreads
cache refreshes more strategically to enforce output quality.

Frame Theoretical
FLOPs ↓

Actual
FLOPs ↓ FLIP ↓ SSIM ↑ PSNR ↑ LPIPS ↓ MSE ↓

0 - Ref 49.954 50.098 0 1.000 - 0 0
1 - Delta 44.124 48.561 0.130 0.854 28.413 0.148 37.502
2 - Delta 41.788 46.449 0.184 0.826 25.909 0.200 69.130

Table 3. Results of ExtraNet with DeltaCNN on Asian Village
scene. Full inference is computed in the first frame (0 - Ref), then
only deltas for the subsequent frames (1 - Delta and 2 - Delta).
FLOPs are reported using the DeltaCNN performance metrics
manager. Actual FLOPs are higher than theoretical savings due to
the overhead of the DeltaCNN framework and tiling strategy.

ble 3 reports our results and show that our caching scheme is
more effective in reducing FLOPs and improving inference
latency than DeltaCNN. Techniques such as DeltaCNN re-
quire very high sparsity to achieve realized speedups unless
a dedicated sparse accelerator is used, which is not commer-
cially available. Furthermore, DeltaCNN is designed for
video processing, which typically take a single RGB frame
as input, while our rendering workloads require several con-
catenated G-buffers and time-warped frames as input. Un-
fortunately, these input configurations are less suitable for
computing deltas between frames, worsened by the channel-
wise masking strategy used in DeltaCNN.

Our caching scheme can be combined with DeltaCNN to fur-
ther reduce FLOPs in the non-cached blocks of the network.
We evaluate the combined method on the frame extrapola-
tion task but find that there is little performance improve-

Level 3 Level 2 Level 1 U-Net++ A U-Net++ B

FLIP ↓ 0.023 0.026 0.035 0.013 0.014
SSIM ↑ 0.982 0.979 0.968 0.991 0.989
PSNR ↑ 34.04 33.37 31.29 33.34 31.03
LPIPS ↓ 0.010 0.012 0.018 0.011 0.013
MSE ↓ 3.457 4.087 6.073 1.787 1.918

FLOPs ↓ 71.8% 62.9% 46.2% 56.6% 30.1%

Table 4. Results of ablation study on ExtraNet and Implicit Depth
comparing different cache levels and configurations. Image quality
results are averaged over all frames in the test set and FLOPs ↓ are
relative to the baseline encoder-decoder network.

ment versus using ReFrame only. Although the combined
method reduces FLOPs, the hardware is not optimized for
the scattered nature of the eliminated computations, causing
high overheads and low performance gains.

4.5. Ablation Study

We choose to cache the last block of the U-Net architec-
ture for all experiments because it is the most effective
for reducing the number of FLOPs required. We explore
caching deeper blocks in the U-Net architecture, which re-
duces fewer FLOPs but also suffers less quality degradation.
Similarly, the U-Net++ architecture can be cached in a vari-
ety of ways, with each concatenation in the network offering
a potential caching point. We choose to cache at the last
block (Config B), but also consider caching all additional U-
Net++ blocks while only evaluating the foundational U-Net
blocks during cached inference (Config A). More details
on the configurations are provided in Appendix A.3. Ta-
ble 4 presents the results of our ablation study, showing
that all options result in low quality degradation. Figure 8
visually shows that errors are nearly unnoticeable and in-
distinguishable between levels according to the FLIP error
map. Therefore, we choose the option that produces the
most significant performance gains.

We also evaluate other cache policies on the frame extrap-
olation task, including updating the cache every N = 2
frames (N-2), every N = 5 frames (N-5), based on motion
vectors, and based on the non-linear cache policy proposed
by DeepCache (Ma et al., 2024) (Non-Linear N-5). Table 5

8

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Figure 8. Ablation study results for ExtraNet U-Net architecture.
Config A caches all U-Net++ blocks, while Config B caches only
the last block.

Policy Delta L Delta H N-5 N-2 Motion
Vector

Non-Linear
N-5

Refresh Frames 3 6 2 5 4 2
FLIP ↓ 0.035 0.021 0.040 0.025 0.030 0.040
SSIM ↑ 0.968 0.981 0.963 0.976 0.971 0.961
PSNR ↑ 31.29 31.08 31.39 31.34 31.22 31.21
LPIPS ↓ 0.018 0.010 0.020 0.013 0.016 0.022
MSE ↓ 6.073 3.655 7.046 4.653 5.471 7.259

Table 5. Results of ablation study on ExtraNet comparing different
cache refresh policy settings on a sequence of 10 frames. Re-
fresh frames are full inference computations to refresh the cache.
Delta L results in better image quality with fewer cache refreshes.

shows that the frame delta policy (Delta L) outperforms the
other policies in balancing performance and quality. Motion
vectors are also very effective, but are not reliably avail-
able in all rendering workloads. Figure 9 confirms that the
every-N policy suffers from spikes of low quality when
movements do not match the cache refresh rate, while the
maximum error from Delta L is consistently lower. Figure 7
also shows that the Delta L policy allocates cache refreshes
more strategically according to the input behavior, leading
to results with more consistent quality.

5. Discussion and Limitations
ReFrame is designed for U-Net and encoder-decoder style
networks only and does not support other architectures such
as transformers. Although there are many transformer-based
models used in real-time rendering applications, such as
DLSS 4.0 (Lin & Burnes, 2025), we believe U-Net-like
convolutional networks are still heavily employed and more
feasible to execute on lower-end devices. ReFrame is partic-
ularly useful on these lower-end devices where trading slight
quality loss for latency reduction is valuable. The trade-off
between quality and latency will differ for each network,
depending on the cache configuration and the portion of the
overall network architecture that can be skipped.

Although ReFrame can effectively reduce inference time in
many frames to lower average latency, our technique cannot
maintain a consistently faster frame rate since the cache

100 120 140 160 180 200
Frame

0

5

10

Ou
tp

ut
 M

AP
E

(%
) N-5 Delta_L No Update

Figure 9. Mean absolute percentage error (MAPE) of outputs from
Implicit Depth using N-5, Delta L, and No Update cache policies
after 100-frame warmup. Both N-5 and Delta L policies show low
errors, but Delta L avoids larger error spikes.

will require periodic refreshes. Since ReFrame focuses
on the post-processing stage that enhances the rendered
images, additional image quality improvements from the
neural networks can be included in a best-effort manner.
Furthermore, reducing computation on average still reduces
energy consumption, which is an especially important target
in mobile-class devices such as VR headsets.

6. Conclusion
In this work, we propose a novel cache mechanism for
neural networks that exploits the temporal coherence of real-
time rendering workloads. Our method caches intermediate
layer outputs in encoder-decoder style networks and reuses
them in subsequent frames to reduce the number of FLOPs
required for inference. Our proposed approach is limited to
networks with skip connections and concatenations between
intermediate layers, but this is a common architecture in
real-time rendering pipelines. We explore different cache
refresh policies and demonstrate reduced inference latency
on three real-time rendering tasks. As future work, we
plan to investigate more sophisticated cache policies with
dynamic sensitivity settings and applying our method to
other network architectures.

Acknowledgements
We thank the reviewers for their feedback and the authors of
our test workloads for their open-source implementations.
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). Tor Aamodt
recently served as a consultant for IBM and Cisco.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

References
Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson,

M., Åström, K., and Fairchild, M. D. FLIP: A difference
evaluator for alternating images. Proc. Int’l Conf. on Com-
puter Graphics and Interactive Techniques (SIGGRAPH),
3(2), 2020.

Arnau, J.-M., Parcerisa, J.-M., and Xekalakis, P. Parallel
frame rendering: Trading responsiveness for energy on a
mobile gpu. In Proc. IEEE/ACM Conf. on Par. Arch. and
Comp. Tech. (PACT), pp. 83–92, 2013.

Barman, N., Zadtootaghaj, S., Schmidt, S., Martini, M. G.,
and Möller, S. GamingVideoSET: a dataset for gaming
video streaming applications. In Workshop on Network
and Systems Support for Games (NetGames). IEEE, 2018.

Bhuyan, S., Ying, Z., Kandemir, M. T., Gowda, M., and
Das, C. R. GameStreamSR: Enabling neural-augmented
game streaming on commodity mobile platforms. In Proc.
IEEE/ACM Int’l Symp. on Computer Architecture (ISCA),
2024.

Chen, Y., Lu, Y., Zhang, X., and Xie, N. Interactive neural
cascade denoising for 1-spp Monte Carlo images. The
Visual Computer, 39(8), 2023.

Choi, H., Hong, S., Ha, I., Kang, N., and Moon, B. Online
neural denoising with cross-regression for interactive ren-
dering. ACM Transactions on Graphics (TOG), 43(6),
2024.

Chowdhury, H., Kawiak, R. R., de Boer, G. F., and Xavier,
L. Intel XeSS-an AI based super sampling solution for
real-time rendering. In Game Developers Conference
(GDC), volume 1, pp. 7, 2022.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and
Fergus, R. Exploiting linear structure within convo-
lutional networks for efficient evaluation. Proc. Conf.
and Workshop on Neural Information Processing Systems
(NeurIPS), 27, 2014.

Dutson, M., Li, Y., and Gupta, M. Event neural networks.
In European Conf. on Computer Vision (ECCV), 2022.

Dutson, M., Li, Y., and Gupta, M. Eventful transformers:
leveraging temporal redundancy in vision transformers.
In Proc. IEEE Int’l Conf. on Computer Vision (ICCV),
2023.

Guo, J., Fu, X., Lin, L., Ma, H., Guo, Y., Liu, S., and Yan,
L.-Q. ExtraNet: real-time extrapolated rendering for low-
latency temporal supersampling. ACM Transactions on
Graphics (TOG), 40(6), 2021.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding. Proc. Int’l Conf. on
Learning Representations (ICLR), 2016.

He, R., Zhou, S., Sun, Y., Cheng, R., Tan, W., and Yan,
B. Low-latency space-time supersampling for real-time
rendering. In Proc. Conf. on Artificial Intelligence (AAAI),
volume 38, 2024.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. Proc. Conf. and Workshop on Neural
Information Processing Systems (NeurIPS), 33, 2020.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. Proc. Conf. and
Workshop on Neural Information Processing Systems
(NeurIPS), 29, 2016.

Kong, W., Hao, Y., Guo, Q., Zhao, Y., Song, X., Li, X., Zou,
M., Du, Z., Zhang, R., Liu, C., et al. Cambricon-D: Full-
network differential acceleration for diffusion models. In
Proc. IEEE/ACM Int’l Symp. on Computer Architecture
(ISCA), 2024.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
Advances in neural information processing systems, 2,
1989.

Li, T., Slavcheva, M., Zollhoefer, M., Green, S., Lassner,
C., Kim, C., Schmidt, T., Lovegrove, S., Goesele, M.,
Newcombe, R., et al. Neural 3D video synthesis from
multi-view video. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2022.

Lin, H. and Burnes, A. NVIDIA DLSS 4 Introduces Multi
Frame Generation & Enhancements For All DLSS Tech-
nologies, 2025. URL https://www.nvidia.com
/en-us/geforce/news/dlss4-multi-fram
e-generation-ai-innovations/.

Ma, X., Fang, G., and Wang, X. DeepCache: Accelerat-
ing diffusion models for free. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2024.

Mahmoud, M., Siu, K., and Moshovos, A. Diffy: A déjà
vu-free differential deep neural network accelerator. In
Proc. IEEE/ACM Symp. on Microarch. (MICRO), 2018.

Mercier, A., Erasmus, R., Savani, Y., Dhingra, M., Porikli,
F., and Berger, G. Efficient neural supersampling on a
novel gaming dataset. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 296–306,
2023.

Müller, T., Rousselle, F., Novák, J., and Keller, A. Real-time
neural radiance caching for path tracing. ACM Transac-
tions on Graphics (TOG), 40(4), 2021.

10

https://www.nvidia.com/en-us/geforce/news/dlss4-multi-frame-generation-ai-innovations/
https://www.nvidia.com/en-us/geforce/news/dlss4-multi-frame-generation-ai-innovations/
https://www.nvidia.com/en-us/geforce/news/dlss4-multi-frame-generation-ai-innovations/

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Parger, M., Tang, C., Twigg, C. D., Keskin, C., Wang, R.,
and Steinberger, M. DeltaCNN: End-to-end CNN in-
ference of sparse frame differences in videos. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022.

Parger, M., Tang, C., Neff, T., Twigg, C. D., Keskin, C.,
Wang, R., and Steinberger, M. MotionDeltaCNN: Sparse
CNN inference of frame differences in moving camera
videos with spherical buffers and padded convolutions.
In Proc. IEEE Int’l Conf. on Computer Vision (ICCV),
2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
Medical image computing and computer-assisted inter-
vention (MICCAI), pp. 234–241, 2015.

Sayed, M., Gibson, J., Watson, J., Prisacariu, V., Firman, M.,
and Godard, C. SimpleRecon: 3D reconstruction without
3D convolutions. In European Conf. on Computer Vision
(ECCV), 2022.

Scardigli, A., Cavigelli, L., and Müller, L. K. RL-based
stateful neural adaptive sampling and denoising for real-
time path tracing. Proc. Conf. and Workshop on Neural
Information Processing Systems (NeurIPS), 36, 2024.

Scherzer, D., Yang, L., Mattausch, O., Nehab, D., Sander,
P. V., Wimmer, M., and Eisemann, E. Temporal coherence
methods in real-time rendering. In Computer Graphics
Forum, volume 31, 2012.

Steiner, M., Köhler, T., Radl, L., and Steinberger, M. Frus-
tum volume caching for accelerated NeRF rendering.
Proc. Int’l Conf. on Computer Graphics and Interactive
Techniques (SIGGRAPH), 7(3), 2024.

Sun, D., Tian, H., Lu, T., and Liu, S. FlexCache: Flexible
approximate cache system for video diffusion. arXiv
preprint arXiv:2501.04012, 2024.

Thakolsri, S., Kellerer, W., and Steinbach, E. QoE-based
cross-layer optimization of wireless video with unper-
ceivable temporal video quality fluctuation. In IEEE Int’l
Conf. on communications (ICC), 2011.

Vaidyanathan, K., Salvi, M., Wronski, B., Akenine-Moller,
T., Ebelin, P., and Lefohn, A. Random-access neural
compression of material textures. ACM Transactions on
Graphics (TOG), 42(4), 2023.

Walter, B., Drettakis, G., and Parker, S. Interactive rendering
using the render cache. In Rendering Techniques’ 99:
Proc. of the Eurographics Workshop, pp. 19–30. Springer,
1999.

Watson, J., Sayed, M., Qureshi, Z., Brostow, G. J., Vicente,
S., Mac Aodha, O., and Firman, M. Virtual occlusions
through implicit depth. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 9053–9064,
2023.

Wimbauer, F., Wu, B., Schoenfeld, E., Dai, X., Hou, J.,
He, Z., Sanakoyeu, A., Zhang, P., Tsai, S., Kohler, J.,
et al. Cache me if you can: Accelerating diffusion models
through block caching. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2024.

Wu, S., Kim, S., Zeng, Z., Vembar, D., Jha, S., Kaplanyan,
A., and Yan, L.-Q. ExtraSS: A framework for joint spatial
super sampling and frame extrapolation. In Proc. Int’l
Conf. on Computer Graphics and Interactive Techniques
in Asia (SIGGRAPH Asia), 2023.

Xiao, L., Nouri, S., Chapman, M., Fix, A., Lanman, D.,
and Kaplanyan, A. Neural supersampling for real-time
rendering. ACM Transactions on Graphics (TOG), 39(4),
2020.

Xu, M., Zhu, M., Liu, Y., Lin, F. X., and Liu, X. Deepcache:
Principled cache for mobile deep vision. In Proc. Int’l
Conf. on mobile computing and networking (MobiCom),
pp. 129–144, 2018.

Yang, S., Zhao, Y., Luo, Y., Wang, H., Sun, H., Li, C., Cai,
B., and Jin, X. MNSS: Neural supersampling framework
for real-time rendering on mobile devices. IEEE Transac-
tions on Visualization and Computer Graphics (TVCG),
2023.

Yang, S., Zhu, Q., Zhuge, J., Qiu, Q., Li, C., Yan, Y., Xu, H.,
Yan, L.-Q., and Jin, X. Mob-FGSR: Frame generation
and super resolution for mobile real-time rendering. In
Proc. Int’l Conf. on Computer Graphics and Interactive
Techniques (SIGGRAPH), 2024.

Yu, P., Guo, J., Huang, F., Chen, Z., Wang, C., Zhang, Y.,
and Guo, Y. ShadowMover: Automatically projecting
real shadows onto virtual object. IEEE Transactions
on Visualization and Computer Graphics (TVCG), 29(5),
2023.

Zadtootaghaj, S., Schmidt, S., Sabet, S. S., Möller, S., and
Griwodz, C. Quality estimation models for gaming video
streaming services using perceptual video quality dimen-
sions. In Proceedings of the ACM multimedia systems
conference, 2020.

11

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Zhang, H., Guo, J., Zhang, J., Qin, H., Feng, Z., Yang, M.,
and Guo, Y. Deep Fourier-based arbitrary-scale super-
resolution for real-time rendering. In Proc. Int’l Conf.
on Computer Graphics and Interactive Techniques (SIG-
GRAPH), 2024.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as
a perceptual metric. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 586–595,
2018.

Zhong, Z., Zhu, J., Dai, Y., Zheng, C., Chen, G., Huo,
Y., Bao, H., and Wang, R. FuseSR: Super resolution
for real-time rendering through efficient multi-resolution
fusion. In Proc. Int’l Conf. on Computer Graphics and
Interactive Techniques in Asia (SIGGRAPH Asia), 2023.

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., and
Liang, J. UNet++: A nested U-net architecture for med-
ical image segmentation. In Medical image computing
and computer-assisted intervention (MICCAI). Springer,
2018.

12

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

A. Appendix
A.1. Test Set

We select free scenes from the online Unreal Engine Marketplace to generate our test set and render with a modified version
of Unreal Engine 5.1 from the authors of ExtraNet (Guo et al., 2021) to produce necessary G-buffer data. Table 6 summarizes
the test scenes used for evaluation.

Scene Sun Temple Cyberpunk Asian Village

Resolution 1920x1080 1920x1080 1920x1080

Test frames 20 10 20

Frame sequence 150 30 150

Description Scene from NVIDIA
ORCA repository

Scene from video game
Cyberpunk 2077

Free scene from
Unreal Engine Marketplace

Buffers Base color, normal, metallic, roughness, scene depth, motion vector, HDR color, world position, NoV

Table 6. Test scenes used for evaluation.

Authors of Implicit Depth (Watson et al., 2023) released their sample test scenes, which we use to evaluate the performance
of ReFrame on their network. The Garden Chair scene has 295 frames and is rendered at 720×540 resolution.

A.2. Cache Implementation

In this section, we provide more details on how we adapted our test networks to include the caching scheme.

A.2.1. EXTRANET

ExtraNet (Guo et al., 2021) uses several history encoders to capture temporal information, which are concatenated to a
U-Net architecture. We cache the U-Net as described in Section 3.1, which includes the inputs from the history encoders.

A.2.2. IMPLICIT DEPTH

Implicit Depth (Watson et al., 2023) uses SimpleRecon (Sayed et al., 2022) as the backbone network to estimate depth
features. SimpleRecon is based on a U-Net++ architecture, using ResNet blocks for the encoder and a nested U-Net for the
decoder. We cache the U-Net++ architecture as described in Section 3.1 and keep the remaining network the same.

A.2.3. FBSR

Fourier-based super resolution (FBSR) (Zhang et al., 2024) does not use a standard U-Net or U-Net++ architecture. However,
the network still generally follows a decoder-encoder structure, with feature extraction blocks concatenated before the final
block. We apply a similar principle and cache inputs to the concatenation to be reused in subsequent frames. In this case, we
choose to cache the temporal and high resolution (HR) features since the low resolution (LR) features are most similar to the
shallow layers in a U-Net and provides the most contextual information of the current frame. We also consider caching only
the temporal features, but find that while quality does not improve noticeably, the performance gains are not as significant as
caching both temporal and HR features. Figure 10 shows the FBSR architecture with ReFrame.

13

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Temporal Recurrent
Feature Extractor

HR G-buffers Feature
Extractor

LR Frame Feature
Extractor

HFFM

𝐶

𝐶
+ Feature

Fusion

in

outin

in

×

Frame 𝒕 Frame 𝒕 + 𝟏

Temporal Recurrent
Feature Extractor

HR G-buffers Feature
Extractor

LR Frame Feature
Extractor

HFFM

𝐶

𝐶
+ Feature

Fusion out

in

×

Skipped block

Save to cache𝐶

× Convolution

+ Concatenate

Figure 10. Diagrams of the FBSR architecture with ReFrame. In frame t, the network computes the full inference end-to-end, saving
intermediate features from the temporal recurrent feature extractor and HR G-buffer feature extractor. In subsequent frames t+ 1, the
network reuses the cached features.

A.3. Ablation Configurations

Figure 11 shows the Level 1-3 cache configurations used in the ablation study for U-Net architectures. Figure 12 shows the
U-Net++ A and B cache configurations used in the ablation study for U-Net++ architectures.

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

Full Inference

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

𝐶

Level 1

𝑋!

𝑋"

𝑋# 𝑋$ 𝑋%

𝑋&

𝑋'

𝐶

Level 2

𝑋!

𝑋"

𝑋$ 𝑋%

𝑋&

𝑋'

𝐶

Level 3

𝑋#

Skipped block
Save to cache
Upsample
Downsample
Skip connection

Figure 11. Ablation configurations for ExtraNet U-Net architecture.

𝑋!,!

𝑋#,!

𝑋$,!

𝑋%,!

𝑋!,#

𝑋#,#

𝑋$,#

𝑋#,$

𝑋!,%𝑋!,$
𝐶

Skipped block
Save to cache
Upsample
Downsample
Skip connection

Frame 𝒕 Frame 𝒕 + 𝟏

𝐶

𝐶

𝑋!,!

𝑋#,!

𝑋$,!

𝑋%,!

𝑋!,#

𝑋#,#

𝑋$,#

𝑋#,$

𝑋!,%𝑋!,$
𝐶

𝐶

𝐶

𝑋!,!

𝑋#,!

𝑋$,!

𝑋%,!

𝑋!,#

𝑋#,#

𝑋$,#

𝑋#,$

𝑋!,%𝑋!,$

𝐶𝐶𝐶

𝑋!,!

𝑋#,!

𝑋$,!

𝑋%,!

𝑋!,#

𝑋#,#

𝑋$,#

𝑋#,$

𝑋!,%𝑋!,$

𝐶 𝐶 𝐶

Frame 𝒕 Frame 𝒕 + 𝟏

U-Net++ BU-Net++ A

Figure 12. Ablation configurations for Implicit Depth U-Net++ architecture.

Table 7 shows the detailed settings of the cache refresh policies used in the ablation study.

Configuration Delta H Delta L Motion Vector Non-Linear

Parameters τ = 0.20 τ = 0.25 τ = 1 c = 110, p = 1.4

Table 7. Detailed settings of cache refresh policies. τ values are thresholds for SMAPE and average motion. c and p are parameters for
the non-linear policy as described in DeepCache (Ma et al., 2024).

A.4. Comparison to Video Games

We compare the amount of motion in our test set to those commonly observed in videos of real-world game play from
GamingVideoSET (Barman et al., 2018) and CGVSD (Zadtootaghaj et al., 2020). These datasets are designed to evaluate

14

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

0 50 100 150 200 250
0

10

20

30
Sun Temple

0 5 10 15 20 25

Cyberpunk

0 50 100 150 200 250

Asian Village

0 50 100 150 200 250

Garden Chair

0 20 40 60 80
0

10

20

30
Fortnite

0 20 40 60 80

Dota 2

0 20 40 60 80

FIFA 17

0 20 40 60 80

CS:GO

Frame

M
ot

io
n

M
ag

ni
tu

de
25th Percentile Median Motion 75th Percentile

Figure 13. Optical flow motion comparison matching our test scenes to real-world game play from GamingVideoSET (Barman et al.,
2018) and CGVSD (Zadtootaghaj et al., 2020).

Ref 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Frame

0.0

0.1

0.2

0.3

0.4

FL
IP

 S
co

re
(R

el
. t

o
Re

f F
ra

m
e) No Update

Zero
Random
Normal Dist.
Noisy
Very Noisy
Cache

Figure 14. Null hypothesis test with Sun Temple on ExtraNet.

video compression algorithms and contain a representative variety of video game content. We measure the per-pixel deltas
between each subsequent frame, as we use this metric to trigger cache refreshes. We also measure optical flow between
frames as a secondary check that our test set exhibits a similar range of motion to real gameplay scenarios. Table 8 shows
that our test set demonstrates a variety of motion patterns, within a similar range to the gaming video datasets.

A.5. Null Hypothesis

We test the null hypothesis that the contents of the cache are irrelevant to the final result, meaning that the cached features
can be replaced with any arbitrary value without affecting the network output. Specifically, we try replacing the cache with
all zero values (Zero), uniformly random values (Random), normally distributed random values (Normal Dist.), all of which
generate significantly worse results according to the FLIP score. Notably, the results are worse than not running the network
at all (No Update).

We also test variations that add noise to the cached features. A small amount of noise (one standard deviation) does not affect
the results, implying that the cached features are not sensitive to small perturbations. However, larger amounts of noise do
degrade the final results. Figure 14 shows the results of the null hypothesis test for the Sun Temple scene on ExtraNet.

15

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Dataset Scene Per-Pixel Delta
(Average)

Per-Pixel Delta
(25th percentile)

Per-Pixel Delta
(Median)

Per-Pixel Delta
(75th percentile)

Average Optical
Flow Magnitude

GamingVideoSET CS:GO 12.85 2.00 5.79 14.58 11.23
GamingVideoSET Diablo III 2.73 0.71 1.41 3.08 2.35
GamingVideoSET Dota 2 0.99 0.00 0.00 0.71 0.19
GamingVideoSET FIFA 17 5.51 0.71 1.50 3.24 0.61
GamingVideoSET H1Z1 7.97 1.00 3.00 8.40 7.28
GamingVideoSET Hearthstone 0.45 0.00 0.00 0.00 0.19
CGVDS Overwatch 8.19 0.88 2.60 8.82 3.67
CGVDS Fortnite 7.85 1.28 3.38 8.98 2.48

Ours Sun Temple 10.20 0.00 2.55 10.20 1.81
Ours Cyberpunk 10.73 0.99 2.37 7.45 0.36
Ours Asian Village 17.85 2.55 7.65 22.95 5.80
Ours Garden chair 40.89 9.71 23.07 51.47 4.53

Table 8. Video motion analysis comparison of per-pixel deltas and optical flow between our test sequences and real-world gaming video
from GamingVideoSET (Barman et al., 2018) and CGVDS (Zadtootaghaj et al., 2020) datasets.

Network Cache size Saved input size
(for frame deltas)

Peak memory usage
(baseline)

Peak memory usage
(ReFrame)

ExtraNet 21MB (24×360×640
float32 tensor)

21MB warped image
(6×720×1280 float32)

787 MB 787 MB

FBSR 158MB (16×540×960
float32 temporal feature
+ 64×540×960 float32
HR feature)

1MB LR feature
(3×270×480 float32) +
24MB prev. result
(3×1080×1920 float32)

5.1GB 5.3 GB

Implicit Depth 84MB (seven 64×192×256
float32 tensors)

2MB input image
(3×384×512 float32)

396 MB 457 MB

Table 9. Cache memory usage of our selected workloads. The cache size is determined by the size of the tensors stored between sequential
frames. Peak memory usage is measured for the end-to-end network inference.

A.6. Memory Consumption

ReFrame has a relatively small memory footprint, requiring storage of only a few tensors. The storage size is dependent
on the network architecture and the resolution of the input image. Although high resolution images require a larger cache,
the high resolution would also result in more FLOPs reduction with our technique, which helps justify the larger memory
consumption. Table 9 measures the cache memory usage of our selected workloads. If memory is a large concern, the cache
can also be stored in a lower precision, such as float16, with negligible changes in per-frame quality.

A.7. Additional Results

We provide additional results for longer frame sequences in Table 10. Our main test set already contains several cache
refreshes, which captures the latency and image quality effects of applying ReFrame. Longer sequences simply include a
more varied set of cache refreshes, which does not significantly change the results.

We also provide additional results reporting the latency of the network inferences. Table 11 compares the latency with
DeltaCNN, ReFrame, and both techniques combined against the baseline network. Applying ReFrame in addition to
DeltaCNN compounds the latency reduction.

Table 12 reports the average latency and the worst case latency represented by the 95th percentile. As explained in Section 5,
ReFrame is only effective at reducing the average latency.

16

ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering

Workload Scene Skipped
Frames ↑

Eliminated
Enc-Dec FLOPs ↑ Speedup ↑ FLIP ↓ SSIM ↑ PSNR ↑ LPIPS ↓ MSE ↓

FE Sun Temple (Long) 45% 24% 1.25 0.025 0.990 36.01 0.011 4.31
Asian Village (Long) 69% 37% 1.50 0.037 0.987 39.55 0.018 4.85

SS Asian Village (Long) 45% 32% 1.33 0.070 0.950 49.37 0.050 15.40

Table 10. Performance and image quality results with longer frame sequences. (FE - frame extrapolation, SS - supersampling)

Frame Baseline Latency Latency w/ DeltaCNN Latency w/ ReFrame Latency w/ DeltaCNN + ReFrame

0 - Ref Full Inf. 4.6 ms Full Inf. 4.6 ms Full Inf. 4.7 ms Full Inf. 4.7 ms
1 - Delta Full Inf. 4.6 ms Delta Inf. 3.8 ms Cached Inf. 2.0 ms Delta + Cached Inf. 1.9 ms
2 - Delta Full Inf. 4.7 ms Delta Inf. 3.7 ms Full Inf. 4.8 ms Delta Inf. 3.7 ms

Table 11. Latency breakdown of three sequential frames of the Asian Village scene with ExtraNet comparing baseline network to
DeltaCNN, ReFrame, and the combined approach of DeltaCNN + ReFrame.

Workload Scene Baseline Avg. Baseline 95pct. Delta L Avg. Delta L 95pct. Delta H Avg. Delta H 95pct.

FE Sun Temple 4.60 ms 4.75 ms 2.67 ms 4.55 ms 3.24 ms 4.65 ms
Cyberpunk 3.56 ms 4.22 ms 2.39 ms 3.46 ms 2.89 ms 3.80 ms
Asian Village 4.16 ms 4.72 ms 2.68 ms 4.64 ms 3.36 ms 4.64 ms

SS Sun Temple 68.6 ms 69.0 ms 35.4 ms 68.0 ms 51.8 ms 68.9 ms

IC Garden Chair 109 ms 118 ms 91 ms 109 ms 104 ms 116 ms

Table 12. Latency results of our selected workloads, measured in milliseconds. Avg. is averaged over all frames in the test set; 95pct. is
the worst case latency at the 95th percentile.

17

